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Abstract

This paper introduces a new test for goodness-of-fit based on the Gini index which is the sum over all pairs,
of the absolute differences of the observed spacings. We derive its exact and asymptotic distributions under
the null hypothesis, after showing that it is distributionally equivalent to the sum of uniform observations on
the unit interval. After a discussion of local powers of this and related tests, we provide simulated power
comparisons, which demonstrate that the Gini test is better than all the other competitors considered, against
a wide variety of alternatives.
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1. Introduction

Consider a random sample Xi,...,X, from a continuous distribution function(d.f.) F* on the real
line and let (X(1),...,X(,)) denote the order statistics from this sample. Considerable attention has
been devoted in the literature to the problem of goodness-of-fit i.c., testing the hypothesis

H: F*(x)=Fj(x) against the alternative K : F*(x) # Fj(x),

where Fj is a completely specified continuous d.f. Apart from various ad hoc tests, there are
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3 general classes of tests for this problem, viz.

1. the y? tests which depend on groupings,
2. tests based on empirical d.f.’s, and
3. tests based on spacings i.e. the differences between order statistics.

There have been suggestions in the literature that tests based on empirical d.f.’s such as the
Kolmogorov—Smirnov and Cramer—von Mises statistics perform better in detecting differences be-
tween d.f.’s, whereas tests based on spacings are particularly effective in revealing the differences
between densities. See for instance, the discussion in Pyke (1965), which also provides an excel-
lent survey on the topic of spacings. Jammalamadaka and Tiwari (1987) show that comparable
spacings tests are better than chi-squared tests, in terms of local power. It should be noted that,
outside of the goodness-of-fit framework, spacings-based tests arise in many other contexts includ-
ing reliability. See e.g. Soofi et al. (1995), and Jammalamadaka and Taufer (2003). In a survey
paper Birnbaum (1953) discusses general methods of chi-square, Kolmogorov—Smirnov, Cramer—
von Mises and spacings. The reader is also referred to Shorack and Wellner (1986) for a thorough
treatment of distribution-free goodness-of-fit tests based on empirical d.f.’s.

Without loss of any generality, one can reduce the above problem of goodness-of-fit, to testing
the hypothesis of uniformity on the unit interval, by means of the probability integral transformation
U =F*(X). That is, on the basis of the transformed sample, U; = Fj(X;), i=1,2,...,n the problem
becomes one of testing uniformity i.e.,

H:F(u)=u, 0 <u <1 against the alternative K :F(u)#u, 0 <u < 1.
From here on, we shall assume that such a transformation has been made and define
D; =U;y — U=y, i=1,2,...,n+ 1, with the notation Uy =0, Upyr) = 1.

Although there has been significant work prior to it, it is fair to say that the impetus for work
on the theory of spacings came from the paper by Greenwood (1946), who proposed the statistic
Zf:f D? to test whether certain events such as the spread of disease occur at random (or follow a
Poisson process with fixed rate) on the time axis. Since then, many tests based on spacings have
been proposed in literature; see Pyke (1965) for a good review. Sethuraman and Rao (1970) and
Rao and Sethuraman (1975) provide a unified treatment of the asymptotic distribution theory for
symmetric spacings statistics, by expressing such statistics in terms of the empirical spacings process.

The {D;} defined above are called one-step or simple spacings. One can generalize this idea of
spacings by defining, for any fixed integer m, (1 < m < n), the m-step (or higher-order) spacings.
The overlapping m-step spacings are defined by

U(ier)—U(i), i=01,....,.n+1—m,
1+ U(,'erfnfl) — U(,‘), i=n+2-—m,...,n,

D™ —
whereas the non-overlapping m-step spacings are defined by
ng):U(H—l)m_ U(l')m, lZO,l,,[ﬂ/m]— 1

Jammalamadaka and Kuo (1984) consider tests based on these higher-order spacings and show that
tests based on m-step spacings have higher efficiency compared to their counterparts based on simple
or one-step spacings.
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The spacings {D;, i=1,2,...,n+1}, under the null hypothesis of uniformity, form an exchangeable
set of random variables with an expected value of 1/(n+1). Since they add up to one, their arithmetic
mean is also D= 1/(n+1). Thus, tests of uniformity can be constructed by measuring how different
{D;, i=1,2,...,n+1} are from their average value of 1/(n+1). In Section 2, we show that many of
the spacings tests considered in the literature can be viewed in terms of various choices of measures
of dispersion of these {D;}.

An alternate way to construct a general class of such tests is to use the Csiszar divergence measure
between two probability distributions F(-) and F(-)

e = [ () amon

where & : (0, co) — R is a convex function with (1) = 0. See e.g., Ekstrom (1997) and Ghosh
and Jammalamadaka (2001). A special case of this measure is the Kullback—Liebler distance, which
takes the simple form Z;’Ll log D; in this particular instance. Darling (1953) has studied this statistic
and its first order approximation >7*! 1/D;.

In Section 2, We propose a new test for goodness-of-fit based on the Gini’s measure of dispersion
and in Section 3, we discuss its exact and asymptotic distributions under the null hypothesis. Some
comments on the local powers of this and related statistics are provided in Section 4 and numerical
comparison of powers is provided in Section 5. Finally, in Section 6, we provide conclusions and
discuss possible future research.

2. Spacings tests as measures of dispersion

As stated earlier, a test of uniformity based on spacings corresponds to a dispersion measure
for D; and one can use any dispersion measure to serve that purpose.

Common among the dispersion measures are the variance, mean absolute deviation, range and
interquartile distance. While measures such as the mean absolute deviation and Gini’s index are less
frequently used, perhaps due to the computational difficulties involved, these are known to be more
robust to the outliers than the others mentioned.

We remark that the test based on the variance

n+1

Vo= (Di—1/(n+ 1)y (1)
i=1

corresponds to the Greenwood statistic (see also Kimball (1947)). A generalized Greenwood statistic
based on m-step spacings (overlapping, as well as non-overlapping) and its asymptotic optimality,
has been studied in detail by Rao and Kuo (1984).

An alternate dispersion measure, namely the mean absolute deviation leads to the statistic

n+1

Rn:Z|D,»— 1/(n+ 1) (2)
i=1

which was suggested by Sherman (1950). This latter statistic was independently introduced in the
context of circular data by Rao (1969) with Russell and Levitin (1995) providing an extensive table
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of critical values for it. More generally, it is clear that any convex function of the spacings or of
higher-order spacings can be used for this purpose.

The range, the interquartile range and the Gini’s index of the observed spacings can also be used
for goodness-of-fit testing. This has not been discussed in literature, although Rao and Sobel (1980)
provide a pertinent and useful discussion of tests based on ordered spacings. Our goal here is to
study the test statistic based on the Gini’s index, while the others are deferred to a later study.

Gini, in introducing his measure of dispersion, raised objection to using the variance or the mean
absolute deviation, since they measure the deviation of individual observations from the “center,”
thus interlinking the concept of location with variability. According to him, these are two distinct
properties, needing distinct measures which do not depend on each other. Therefore he proposed the
sum of pairwise distances between the observations, as a measure of dispersion. Gini measure can
be related to the measure of concentration and has thus found considerable appeal in economics and
received renewed attention.

Applying this idea to {D;} in our context, we may define the Gini index of dispersion for spacings,
as

n+1 n+1
Gi=)Y_> |Di—Dy|. 3)
i=1 j=1
Our goal in this paper is to study this Gini statistic G,, its distributional properties and how it
compares with other competing tests of uniformity.

Remark 1. One can consider a generalized Gini statistic defined by
n+1 n+1

Gui(r)=>_>IDi=Dy', r>0.

i=1 j=1

Clearly the special case » = 1 corresponds to the Gini statistic G, that we discuss here, while the
special case » =2 corresponds to the Greenwood statistic.

Remark 2. If we consider the vector of spacings, D=(Dy,...,D, ), the Greenwood statistic ¥ =D'D
is a quadratic form which gives equal weights to all the spacings. Since {D;} are correlated, it is
tempting to ask whether one gets different (and possibly better) test by taking into account the
covariance-structure between these spacings. It is known (see e.g. Pyke (1965)) that

Cov(D)=2=(0;), i,j=12,....,n+1,

where
1 n
O = T 0y YT G 1m0
(n+1Y(n+2) (n+1)Y(n+2)

Since the covariance matrix is singular, we may take its generalized inverse 2. Consider the statistic

V*=D2"D
which introduces appropriate weights into the quadratic form. It can be checked that the matrix

I =((d")),
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with
o/ =(n+1)n+2), " =20n+1)(n+2)
is indeed the Penrose inverse of 2. The resulting statistic }'* is exactly identical to the unweighted

Greenwood statistic, /. Thus there is no gain in such a weighting scheme.

Our objective in the next few sections is to discuss the test statistic G, based on Gini’s index and
compare its performance with competitors like the Greenwood statistic.

3. Exact and asymptotic distribution of G, under the hypothesis

In this section, we derive the exact as well as the asymptotic distribution of G, under the null
hypothesis of uniformity. The Gini’s measure of dispersion, G, can be rewritten in terms ordered
spacings as follows:

n+1 n+1
Gi=>_> Dy — D)
i=1 j=1
n+1 n+1
=23 > (D) — D))
i=1 j>i
n+1 n+1
=2)_ || 2Dy | — =i+ 1D |- (4)
i=1

j=i+l

On writing the above explicitly and simplifying, we obtain

n+l n+l
Gi=2Y (i—n—2)Dy=4Y Dy —2n+2)=4L, —2(n+2), (5)
i=1 i=1
where
n+1
L,=> iDg). (6)
i=1
Now define

E,-:(n—i—i—2)[D(l-)—D(,-_])], i=1,2,...,n+1,

or, conversely

Doy=) Ej/(n—j+2).
j=1
Then L, defined in Eq. (6) can be expressed as
n+1 i

Ly=> iy Ej/(n—j+2).

=1 j=1
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On explicitly writing the above double sum, we get

n+1 . .
Lo [(n—i—l)z(n—i-Z) - (1—21)1

] E)(n—i+2).
i=1
On further simplification and using the fact that >.'*! E; =1, we get

n+1 n+1

Ly=1/2) (n+i+ DE=@n+1)/2+1/2) ik
i=1 i=1

Starting with the joint density of Uy, Durbin (1961) shows by repeated transformation that
(E1,...,E,y1) are distributionally equivalent to (D;,...,D, 1) under the null hypothesis of unifor-
mity. This result can also be checked directly by representing uniform spacings in terms of scaled
exponential random variables and using a very similar property that holds for exponential order
statistics. Thus, under the null hypothesis, the distribution of L, is the same as that of

n+1
Ly~ (n+1)/2+1/23 iD= (n+1)/2+ L2, (7)

i=1

where L) = Z?;L]l iD; is related to the sum S, =>"" , U; of n uniform random variables on the unit
interval. Indeed

Si=> U=> Uy
i=1 i=1

n i n+1
=Y Y D;=> (n—i+ 1D
i=1 j=1 i=1
n+1
:(n+1)—ZiDi:(n+1)—LZ. (8)

i=1
Combining Egs. (5), (7) and (8), we get
G, ~2(n—3S,) 9)

under the null hypothesis. Note that this is a distributional equivalence that holds under the hypothesis
of uniformity and should not be interpreted any more broadly. Again, a uniform observation U; has
the same distribution as that of (1 — U;), it clear that the distribution of n — S, is the same as that
of S, which has the following well-known density (see e.g. Wilks (1962, p. 204))

[e.9]

fn(x):(n_ll)! > (=Dt (Z) x—n)""" 0<x<n.

k=0
From this, one can write the exact null density of the Gini statistic G,, in the range 0 < y < 2n,

as
B 1 o0 n y n—1
)= 00 %(W(k) <57n> .
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As for the large sample distribution under the null hypothesis, note that by the Central Limit
Theorem for iid variables,

S, ~ N(n/2,n/12)

under the null hypothesis of uniformity. Therefore by using the relationship (9) of G, to S,, we can
claim the asymptotic normality

G, ~ N(n,n/3)
under the null. More precisely, as n goes to infinity,
(3/m)V*(G, — n)

converges to a standard Normal distribution.
Note that the exact as well as the asymptotic distributions of both L} and L, can be easily written
down from that of S, using Eqgs. (8) and (7), respectively.
Since E(D(;)) ~ i/(n+1)?, it is reasonable to consider yet another test statistic for goodness-of-fit,
viz.
n+1
T,= [Dy —i/(n+ 17T (10)
i=1
When expanded, this can be written as a linear combination of the Gini Statistic G, (or its equivalent
L,) and V,, which is equivalent to the Greenwood statistic i.e.,

T,=V,+1/(n+1)=2L,/(n+ 1) 4+ (n +2)2n + 3)/{6(n + 1)*}
=V, —2L,/(n + 1)* + (8n* + 19n + 12)/{6(n + 1)’} (11)
or
(n+ 12T, —5/6(n+ 1) =[(n+ 1)V, =2+ D)1 = 2(n + 1)"V?[L, — 3/4(n + 1)].

The exact null distribution of Greenwood statistic has been tabulated (see e.g. Burrows (1979)) and
for large samples,

(n+ 120, —2(n+ 1)"?

is asymptotically normal with zero mean and variance 4 (see e.g. Darling (1953)). However since
G, and V, are not necessarily independent, the exact and asymptotic null distribution of 7, needs
further investigation.

4. Some comments on power for specific alternatives

Here we offer some comments on the powers of the tests S,, L, and L} under various alternatives.
It is well known (see e.g.. Section 3 of Rao and Sethuraman (1975) and references therein) that
tests which are symmetric in spacings, have lower asymptotic powers in the Pitman sense. However,
their small sample powers are reasonable (see the small simulation in the last section) and they
are especially relevant in the field of directional data, where spacings form the maximal invariant.
We should also remark that although the Gini test is equivalent to S, under the null hypothesis, its
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behavior and performance can be very different under alternatives. We consider a close sequence of
the so-called “smooth” alternatives of the form

H,:F,(x)=x+n""’M,(x), M,(0)=0 and M,(1)=0. (12)

Here we assume that M,,(x) is continuously differentiable with derivative m,(x) and that it converges
uniformly to M(x) on [0, 1], a twice continuously differentiable function with first and second deriva-
tives m(x), m'(x), respectively, so that

sup [m,(x) — m(x)| = o(1).
0<x<l1
Against such a sequence of alternatives, Holst and Jammalamadaka (1981) show that (see their
Theorem 3.1 and Eq. (3.6)), the test based on

n+1

T, = m(i/(n+1)D:.

i=1

is locally most powerful (LMP )for testing uniformity. The following remark is also taken from there:

Remark 3. Consider testing the hypothesis that a random sample is from a logistic distribution with
G(t)=1/(1 +¢e7") against local translation alternatives, G(¢ — 0/+/n). After transforming the data to
the interval [0, 1] through x = G(¢), the null hypothesis translates to testing uniformity, while M, (x)
described in Eq. (12) converges to M(x) = G'(G~'(x)) with derivative

mx)=2x —1), 0<x<l1

(cf. Holst and Jammalamadaka (1981)). Thus the LMP test for this context reduces to one based
on L;.

Things are not so clear when one is dealing with tests based on ordered spacings like L, or its

equivalent G,. This is mainly because of the fact that although spacings under general alternatives
can be expressed in terms of uniform spacings for close alternatives (see for example Eq. (3.8) of
Rao and Sethuraman (1975)), their ordering depends very much on what the alternative density is.
Hence one has to resort to simulations.
Remark 4. When considering alternatives at a distance of n~'/* (i.e., Eq. (12) with n~'/2? replaced
by n~1/4), it is known that the Greenwood test V, is locally optimal among tests based symmetrically
on the spacings. However, it has no power against alternatives at a distance of n~'/? i.e., its power
is the same as the level and is not a competitor for L, or L) (see Sethuraman and Rao (1969)).

5. Simulated power comparisons of tests
In this section, we report on a small simulation study that was carried out to compare the Monte

Carlo powers of the four tests of goodness-of-fit, namely the test based on unordered spacings L;,
the Gini test based on ordered spacings G,, the Greenwood statistic V;, and the hybrid statistic
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T, mentioned in Eq. (11). For this purpose we consider testing the null hypothesis of a standard
Normal distribution against several alternatives, at 0.05 level. These alternatives include heavy-tailed
distributions such as the Student #(v), v=1,2,3, thin long-tailed, Laplace, and short-tailed, Logistic.
Samples of sizes 10, 20, 50, 100 with replications of 1000 were generated using the MATLAB
package. The resulting simulated powers are reported in the table below.

Simulated powers of the tests at various alternatives. o = 0.05.

n Test H t t Logistic Laplace
10 Ly 0.093 0.078 0.065 0.089 0.068
G, 0.462 0.273 0.172 0.398 0.196
V, 0.291 0.190 0.122 0.288 0.127
T, 0.260 0.175 0.107 0.269 0.112
20 Ly 0.074 0.064 0.058 0.096 0.071
G, 0.610 0.300 0.159 0.519 0.209
v, 0.356 0.184 0.112 0.374 0.145
T, 0.321 0.165 0.099 0.345 0.136
50 Ly 0.077 0.079 0.065 0.082 0.052
G, 0.890 0.502 0.281 0.762 0.262
V, 0.624 0.288 0.164 0.550 0.178
T, 0.589 0.275 0.163 0.537 0.175
100 Ly 0.097 0.071 0.064 0.092 0.073
G, 0.987 0.645 0.364 0.928 0.408
v, 0.837 0.383 0.202 0.741 0.260
T, 0.782 0.318 0.183 0.689 0.240

From an examination of this table, the following statements can be asserted:

. It is clear that the Gini test G, dominates all the other competing tests, against each of the

alternatives considered. 7, and V, have comparable powers and this is to be expected in view of
the high weight given to V, in Eq. (11). Put differently, 7, ignores the better statistic G, in its
weighting, at its own peril!

. It may be observed that for the Student’s #(v), v=1,2,3 alternatives, the power decreases with

increasing degrees of freedom. Again this is to be expected since the larger degrees of freedom
represent closeness to normality (although with d.f. this small, we are quite far from normality
in an absolute sense).

. The power performance of the new test we introduced, the Gini test G, is quite decent even

for moderate sample sizes like 20 and is nearly twice that of the other competitors considered.
We have done more extensive simulations with several other alternatives with similar ordering in
relative performance.
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6. Conclusion

This paper introduces a new test for goodness-of-fit based on the Gini index of spacings. Its
exact and asymptotic distributions are provided under the null hypothesis and a simulation study
shows that this test has higher powers than others at certain common alternatives. There are several
interesting open questions that are worth further investigation. For instance, one could study the
range and the inter-quartile range of spacings, the more general statistic G,(») mentioned in Remark
1, or the statistic 7, defined in Eq. (10). One could also investigate each of these statistics using
non-overlapping or overlapping m-step spacings. Finally, it would be of interest to theoretically derive
the Pitman efficiency of such tests under smooth alternatives, as in Sethuraman and Rao (1969).
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